AOTHOR
TITLE
POB DATE NOTE

EDRS PRICE DESCRIPTORS
-DENTIPIEPS

Ortiz-pranco, Luis
Mathematical Skills and Performace of. the Elementary School Student in LAOSD: Practional Numbers. 24 Apr 79° 26p.
MPO1/PCO2, Plus postaqe.
Bilinquel Students: Educational Research: Elementary Education: *Elementary School Mathematics:
Evaluation: *Practions: .*Grade 3: *Grade 6: *Mathematics Achievement: Hathematics Instruction: Non English Speaking: Rational Numbers. Testing Limited English Speaking: Los Angeles unified School District CA: *Mathematics Education Research: Number operations

ABSTPACT
Presented is a detailed discussion of the performance pat+ern of third-and sixth-arade pupils 10 the los angeles onified School District (IADSD) for the skill area of fractional numbers. The report begins with a brief and general introduction regarding minimum - competencies and continues with tables showing the perforance levels of non-Enalish. speaking/linited Enqlish speaking (NES/LES) ard English/bilinqual students. The results discussed ase those of a feasibility study conducted in fall 1978, which iavolved 3.835 students. Among the findings, the data revealed that all students in third grade have difficulty in differentiating between the concept of fraction and the concept of ratio when in a parts to whole context. It was also found, that students at the sixth-grade level have difficulty adding and subtracting fractions or multiplying, whole or mixed number by a fraction. Performance patterns are identified for both groups fitactional number skills and suggestions for improving instruction are advanced. (BP)

[^0]
"PERMISSIO TO REPRODUCE THIS MaTERIAL HAS BEEN GRANTED BY INFORMATION CENTER (ERIC)."

DATE: April 24, 1979

To. Dis. Aaron Buchanan and Patricia Milazzo

SUBJECT' MATHEMATICAL SKILL AND PERFORMANCE OF THE ELEMENTARY SCHOOL STUDENT IN LAUSD: FRACTIONAL NUMBERS

The paper attached offers a detailed discussion of the performance pattern of LAUSD. elementary school students in the skill area of fractional numbers. The, text begins with a brief and general introduction regarding minimum competencies and continues with tables showing the performance levels of NES/LES and English/Bilingual. students. The essay discusses some suggestions for improving instruction in the skill area analyzed and ends with a brief summary. The results discussed are those of the feasibility study conducted in fall 1978.

Dj
Attachment

MATHEMATICAL SKILLS AND PERFORMANCE OF THE ELEMENTARY SCHOOL STUDENT IN LAUSD: FRACTIONAL NUMBERS ${ }^{\circ}$
by
Luis Ortiz-Franco

This paper discusses the performance of English/Bilingual and NES/ LES third and sixth grade students in LAUSD. Performance patterns are identified for both groups in fractional number skills and suggestions for improving instruction are advanced.

MATHEMATICAL SKILLS AND PERFORMANCE DF THE ELEMENTARY SCHOOL STUDENT Ifl LAUSD: FRACTIONAL NUMBERS

by

Luis Drtiz-Franco

Introduction
The concern over the level of competency in basic skills of high school graduates in the U.S. has motivated states to adopt-standards of proficiency for high school graduation. Over three-fourths of the states In the nation are in the process of establishing tests of minimum competency; usually to be used prior to high school graduation.. The development of the minimum competency tests is sometimes the responsibility of the state department of education and in other instinces ${ }^{\circ}$ local school districts are charged with this task.

In Callfornia, Assembly Bill 3408, as amended by AB65, calls" for any high school district to adopt local standarids of proficiency in basic skills by June, 1978: After June, 1980, no student who has not met these standards can'theceive a high school diplomp. The progress of individual students toward these proficiency standards must be assessed by the districts at three prescribed intervals prior to the twelfth grade: once in the 4th through 6th grade experience, once during the 7th through 9th grade experience, and twice during the loth through ith grade experience. The law does not preclude any district from conducting an assessment of any pupil in Engish and in the native language of such pupil. Although the native language of limited Englith speaking (LES) and non-English speaking' (NES) students "moy be used for enroute assessment. the 'NES/LES students will have to pass the final assessment of
their proficiency in basic skills in the English language. Nor does the law preclude local districts from assessing progress in fundamental iskilis at the end of each grade level and to use such assessment as eriterion for promotion to the next higher grade.

The Los Angeles Unified School District (LAUSD) is one district which is developing a gradeaby-grade assessment program in conjunction with the state mandated proficiency in basic skills assessment. LAUSD's grade-by-grade assessment program poses several issues pertaining to the educational progress of the NES/LES students. One issue deals with the language of the assessment instruments, English or non-English, and another issue is related to the uses of the assessment instruments. A third issue linked to these two is the language of instruction.

There are at least two alternatives uses of the grade-by-grade assessment instruments by LAUSD. One alternative is to use the assess* ment instruments as achievement indicators and the other is to use them as diagnostic instruments. The second alternative seems to be implicit in the LAUSD grade-by-grade assessment policy. And this perspective immediately brings up the question. of the language of assessment of the NES/LES students. It is widely accepted by now that the proper way to best diagnose the academic needs of NES/LES students is by using the native language of the students. . This is true also for the monolingual \rightarrow English speáklng students. . The academic needs of fluent bilingual. students, English and another language, cante diagnosed in either language provided the students have received instruction in both languages. Otherwise, the acapemic needs of fluent bilingual students-should be assessed in the language which has been their medium of instruction.

Thus, English monolingual students as well as the fluent bilinguals can be assessed in English but the NES/LES students ought to be assessed in their native lenguage; Concomitantly; the language of instruction should be congruent to the language of assessment in order to maximize the - accuracy in diagnosing academic skills.'

The purpose of this paper is to discuss the performance of 3rd and 6th grade NES/LES and Engilish/Bitingual students in LAUSD on the preliminasy verssion of a mathematics assessment instrument and to offer suggestions for instruction to improve the performance levels of these elementary school. students. in this report, attention is focused on the skill areas of fractional numbers.

METHOD

Subjects

A total of 3,835 students from, schools in the Los Angeles Unified School District participated in the study. One thousand seven hundred and forty were representative of the third grade population and' 2,095 were representative of sixth grade students. Three hundred eighty four of, the 1,740 third grade sample were ciassified as NES/LES and 1,356 were cilassified as English/Bilingual. In the sixth. grade representative :" sample, 795 were classified as NES/LES añd 1,300 , were classified as English/Bilingel. For the purposes of this study, students clas'sified as other with respect to language were included In the NES/LES sample.

Instruments

The preliminary version of the Assessment of Progress in Mathematics Skills: Mathematics A was administered to the third grade representative B, preliminary version, was administered to the sixth grade representativé pọpulation. Both veŕsions contained 87 problems each distributed over eight skill areas for grade three and nine skill areas for grade six. The skill areạ covered in grade six but not in grade three was. percent.

Procedure

The study was conducted during fall '78 and 'about 60 schools of LAUSD participated, 30 at each grade level. Approximately three classrooms from each school took part in the study. The intentions of the study were to assess those mathematics skills likely to be part of a student's repertoire at the end of the 3rdand 6th grades. Students at the beginning of the 4 th and 7 th grades, were assumed to represent students at the end of the 3 rd and 6 th grade respectively. The premise behind this assumption was that the amount of forgetting that might have occurred during the summer months, between the end 'of the previous sethool year and the beginning of the present one, wa's compensated for by the review and practice that-took place during the months of September and October 1978 prior to this study: Thus the' statements in this paper about 3 rd and 6th graders'. mathematics skills are well grounded.

The skills, difficulty, and vocabulary levels in the assessment Instruments reflect as close as possible the level of the regular practice exercises in the respective elementary curficulum materials. Consequently, the assessment items tap the kinds of performance expected of students in the regular classroom with certain hedifications as needed to place items in a machine scorable, multiple-choice format.

Classroom teachers administered the tests to their respective classes and they also classified the students, into NES/LES or English/ Bilingual. The bilingual students were judged by their respective teachers to be fluent in English and anothet fanguage, usually Spanish. The assessment instruments were administered in English to all students. An analysis of the students!' perfarmance by grade lével, language, correct answer and main distractor, and cognitive process involved. in the assessment items is discussed below.

RESULTS

The percent of correct responses to each item in the selected skill areas of fractions is the statistic used in analyzing the results. This chosen statistic seems to quite adequate in fulfitiing the diagnost itc purposes of the assessment instruments. In such empaviors, one is" interested what portion (percentage) of the student population has or hás not mastered ţ̦ he given skill or topic. Thus, the tables below, one for each. grade, illustrate the percent of students answering.the items correctly and the meing distractor. of the several wrong choices, the one picked by the greateist portion (percent) of student's was designated as the maini: distractor. The tables provide information by language classificatior for each individual item.
fable $1 \because$ belaw illustrates the result for the 3rd grade representative sample. The skill area and item number, column indicates the area under discussion, fractional nuimbers. The numbers, underneath each skill area indirate the item number as it appeared In the assessment instrument. For instancè, there were six items in the assessment instrument probing the students' skills with fractional. numberss and they were items 16-21.

Table 1. . Performance Level of Representative 3rd Grade Population by Language 'Classification and Skill Area for Each Item: Percent Correct and Main Distractor.

Skill Area and Iteẹm Number	NES/LES		- English/Bi.lingual	
	Correct Answer \%	Main Distractor	$\begin{gathered} \text { Correct Answer } \\ \text { o } \end{gathered}$	Main Diśtractor. . $\%$
Fractional Numbers 16.	24* $\because \cdot$	\% 33	27*, <	34
17.	73	14°	'82	10
$\therefore 18$	- 19	61	32	53
19	. 60	- 22	$82^{\circ} \therefore$	9
ฯ 20	. 27 .	44	- 35 -	. 40.
$\because 21$. 30	43	48	$\therefore 35 *$

*Decimal point is omitted.

One last obsetvation bedore we discuss, the results. There is. presently great deal of integest and concern for the cognitive processess involvey in mathematiçs "assesment at the national fevel: How long it will be before this trénd filters down to state and local levels li.s difficuit to say. But as way of a contribution in this "àrea, three items in Table i are classified as belonging to the mathematicale knowledge (MX) processidoms if nd the other three belong to the mathematical understanding (MU) process demain. Briefiy stated, mathenstical knowledge refers to. the reciall and recognitioh of mathematical ideas
 "mepory"processe's. Exerclises, that assess this cógnitivercategory, require that a person recali or recorgnlze one or more items of information:

Mathematical understanding refers to the explanation and interpretation of mathematical. knowledge and it relies primarily on transformation processes. Exercises that ssess this cegnitive category require that, a person provide an explanation or an illustration.for one or more items of knowledge.

Now we are ready to interpret the information in Table 1. All six items in the fractional' numbers area for grade thiree assessed the skill of numeration: the identification of parts of a whole and identification of number of equal or fractional parts of a whole. Item $\dot{17}$ asked pupils to identify the one, oút of "four possible choices', circular region with 5 equal parts: Eighty, worcent of the English/Bilingual students chose the correct answer while only 73% of the NES/LES $\$$ tudents did so. Item, 19 asked studenss to identify the figure divided into thirds and item 18 tequested pupils to choose the figure showing one-third black. "Eighty two petcent of the English/Blitingual students got item 19 correct while only 60% of the NES/LES pupils succeeded in doing sọ. . Thirty twor percent of the English/Bil lingual sample answered correctly item:18 but only 19% of the MES/LES sample did so The main distractor fpr both samples was 6 ption B and this is indeed revealing:. it is sevealing die to the fact that 61% of the NES/LES studenits and 53% of the Englisthyilinguals chose it. it seems that most students have not mastered the concept of fractigh when placed in the; parts of a wholecontext. Item 18 is illustrated below.

The choice of distractor seems to indicate that students tend to confuse the concept of fraction with that of ratio. That is, the distractor figure shows one part black to three parts blank (1/3) and not ape-third black as does the correct option \dot{D}. This observation appears to be strongly supported by the students' performance on items $16,-20$ and 21.

On item 16, Illustrated below, students were asked 'Which fraction tells how much of the set is black?" The set consisted of ten (10) circles out of which nine (9) were black and one (1) was blank. The correct answer to the question.ls $9 / 10$ but a greater portion of students chose the option showing the numerical value $9 / 1$ than those choosing the correct answer. More specifically, 24\% of the NES/LES students picked 9/10 but 33% selected 9/1. Among the English/Bilingual-students, 27% chose $9 / 10$ and 34% picked $9 / 1$. The ma ln distractor would have been the correct answer if the question had asked the ratio of black circle to white circles (9/1). "This pattern, was repented in the answers to , items 20 and 21 which asked similar questions.

$\frac{9}{10}$
A.

Item 20 depicted a circle divided into eight parts out of which three were shaded and five were not. The question asked students to tell the fractional part shaded. Twenty: seven percent of the NES/LES pupils answered correctily (3/8) but 44% inswered $3 / 5$. Forty percent of the English $/$ Bilinguil-students those $3 / 5$ and only 35% provided the correct answer. Agajin, the main distractor would have been the correct answer had the question been the proportion of shaded parts te white. parts\%
in item 21, 438 of the NES/LES students chose the answer illustrating the ratio of shaded parts to blank part.s of a set instead of the ; option illustrating the'fractional part of the set shaded, which was selected by only' 30% of the pupils. Among the English/Bilingual students, 42% chose the right answer and 35% picked the option lllustrating the ratio of shaded to white parts.

Summary
A small percentage of ard graders exhibited any knowledge of fractions concepts, although low results probably reflect lack of exposure to these concepts for this grade level. Only for problems 17 and 19.60% or higher proportion of either student populations answered correctly. About 40% or less of students in böth. populations were able to answer. the other problems correctly.

- Table 2 below, shows the performance results of the fth grade representative population. As it can be seen, for this grade level the fractional numbers skill area is subdivided into numeration and computeion. This subdivision reflects the spiriting character of the mathermatics curriculum and instruction in the elementary school'. More precisely, by the time students reach the fth grade they have already been instructed in fractional numbers numeration swell as in compu:. . ration.

The cognitive process domain assessed by these exercises is mathematical skill (MS). Mathematical skill is'a cognitive process that refers to the routine manipulation of mathematical ideas and it relies on algorithmic processes. Exercises that assess mathematical skill assume that the required algorithm has been learned and practiced. Such exercises a lm at measuring proficiency in carrying out the algorithm rather than the understanding of how or why it works.

In the specific skill area of: fractional numbers numeration, items 14 and 16 asked students to reduce to lowest terms. More than 50% of - the students in both samples worked problenill successfuil.y. However,

Table 2. Performance Level of Representative 6th Grade Population by hanguage Class!ficatioh and Skill Area for Each Item: Percent Correct and Main Distractor.

*Decimal point is omit'ted.
the performence. on itemm 16 was not as good and if we look cioser at the correct answer and at the ma in distractor we detect the following. The process of reducing to lowest terms was not carried to its final step. That is, $5 / 20$, the main distractor, can be further simplified to $1 / 4$ which is the correct answer. Only 34% of the NES/LES students and 44\% of the English/Bilingual students succeeded in reducing the original fraction to lowest terms. Item 16 is illustrated below.

What is the lowest-tems fraction?
(simolify)
$\frac{15}{60}$
$+$

$\frac{1}{4}$	$\frac{5}{20}$		$\frac{7}{30}$	$\frac{1}{3}$
A. \because	\therefore B.	C.	D.	

Students were requested to provide the mixed number for the improper fraction given in item 15 and to provide the improper fraction for the mixed number given in item 17. Forty eight percent of the NES/LES students did provide the correct answer for item 15 but only. 46\% succeeded in correctly giving the $l m p r o p e r$ fraction when the mixed number was given. On the other hand, 58\% of the English/Bilingual pupils.provided the correct mixed number given the improper fraction and 59\%. succeeded in correctly. giving the improper, fraction given the mixed number. The improper fraction to be changed to a mixed number was $15 / 4$ and the mixed number to be changed to an improper fraction wes 2 3/5.

By looking at the main distractor, we can see that 15% of the NES/LES students subtracted the denominator from the-numerator to get the whole part of the mixed number instead of dividing. Thirteen percent of the NES/LES students seemed to have made a,careless mistake rather than one of performing the wrong operation. In ftem 17, 15\% of English/ Bilinguals and 17% of the NES/LES students' performed the 'right operation but forgot to add the nimerator to the product of 2×5. These two items are shown below.

What is the mixed number for this fraction?

$4 \frac{3}{4}$
$3 \frac{3}{5}$
$11 \frac{1}{4}$
$3 \frac{3}{4}$
A.
B.
c.
D.

What is the fraction for this mixed number?
$2 \frac{3}{5}$

| 23 | $\frac{13}{5}$ | $\frac{10}{5}$ | $\frac{12}{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A. | B. | C. | D. |
| A. | | | |

Itens 25-27 assessed students' skills in adding fractions. While item 27 involved the addition of mixed numbers, items 25 and 26° involved the addition of proper fractions. In both populations, a greater percentage of students answered the problems wrong than answer!ing correctly.

The common procedure used was to add numerators and designating the result as the final numerator and to add denominators and designating the result as the final denominator. Fifty eight percent of the NES/LES subjects and 54% of the English/silinguals gave the answer $9 / 12$ as the correct one when it should have been $14 / 9$ for item 26 below. Thus, students seemed to have forgot en that when adding fractions with unlike denominators we are supposed to find common denominator, divide the common denominator by each numerator, then multiply the quotient by the respective numerators and, finally, add the products. Or perhaps they were not exposed to this technique long enough to achieve mastery.

$$
\frac{2}{3}+\frac{7}{9}=
$$

26

A.
B. .
C.
D.

- In subtracting fractions, items 28-29, many students seemed to have repeated the same procedure as in adding factions, al though not as many in the case of the English/Bilinguals'. Item 28, involving the subtraction of mixed numbers, registered © lower performance level on. the part of both samples than item 28, involving only proper fractions. Pupils chose the easier but incorrect procedure of computing straight subtraction rather than going through the entire process when answering problem 29. Most students choose $21 / 2$ as their answer instead of the correct one, 1 1/2.

Items 30-33 assessed students' skills in multiplying fractions. Two items, 30 and 31 involved the multiplication of a whole number by a proper fraction, item 32 asked for the multiplication of two proper fractions, and in item 33 students were requested to multiply a mixed number by a proper fraction. The highest performance level was registeed in the multiplication of two proper fractions where 67% of the NES/LES students and 75\% of the English/Bilinguals, answered the question correctly. The lowest performance level was in the multiplication of a mixed number by a" proper fraction. In this instance, only 22% of the NES/LES subjects got the correct answer and 30% of the English/Bilinguals did so (item 33 depicted below).

$$
2 \frac{4}{5} \times \frac{1}{2}=
$$

\qquad
(Give ensurer in lowest terms.) 3.3
2. $\frac{4}{10}$
A.
$1 \frac{7}{5}$
$1 \frac{2}{5}$
$2 \frac{6}{7}$
B.
C.
D.
*

In multiplying. whole number by a proper fraction, items " 30 and 31, one -third of the students in both samples multiplied the whole - number by the denominator and the product was placed as the final denominator leaving the initial numerator unchanged. The confect procedure being the multiplication of the whole number by the numerator and leaving the initial denominator unchanged. Thus, it seefis that this portion of the student samples have yet to successfully discriminate the correct procedure. Item 30 is shown below in which 23\% of the NES/LES pupils and 32% of the English/Bilingual ones answer correctly.

Summary

Sixth grade students did better in fractional numbers numeration than in fractional numbers computation. The best performance was registered in the multiplication of two proper fractions. A small percentage of sixth graders exhibited any knowledge of addition and : subtraction of fractional numbers., Performance on the multiplication of mixed numbers by fractions or whöle numbers was fatso very low.

This section outlines some suggestions for instruction aimed at - Improving the skills of LAUSD elementary school students "in the area of fractional numbers. Due to the common weaknesses of the NES/LES and English/Bilingual pupils in working with fractional numbers, the suggestions made here are meant to apply to both populations. However, given the added. language factory the NES/LES students additional suggestions for instructing this group of students are made. .

The central concern of class rom instruction is or ought to be student achievement. There are many variables that directly or indirectly affect student achievement and among them we can list the student's environment in and out of the classroom, the teacher, the curriculum, and the objectives of that curriculum. The teacher and the curriculum affect the instructional process and hence what the student learns. Student learning or achievement level is usually compared co the desired achievement expressed in stated objectives. It is, a commonly held belief that if teachers cover the stated curriculum objectives student achievement approximates the desired achievement level. 'That is, if teachers teach a given topic in the classroom students do learn that topic: However, teachers' instructional activities are strongly influenced by textbooks and if a given topic is not in the textbook chances are teachers will not cover it and, consequently, students will not learn it. On the other hand, If'a mathematical topic is, in the text students do learn it, There is . evidence to indicate that most student learning is directed by the text rather than the teacher. And texts that are overly formal tend
to be less effective: than others.. In short, objectlives, curriculum, teachers, and instructional process affect student achievement and these are variables that are easier to manipulate the students ${ }^{\text {r }}$ environment.

Now, the Timplications of the above statements for LAisis elementary school students mathematics achievement in geveral, and ractional numbers in particular, seem to be as follows. Therlow ichievement level of English/Bilinguals and NES/LES pupils suggest that either. fractional number skills are not an overly important gbjective; or that the curriculum and teachers, and' hence the instructional process, (' do not adequately emphasize this skill area. Current LAUSD elementary mathematics objectives indicate that fractional numper, ski, insare indeed Important, and an examination of the currently used mathematics textbooks show an adequate coverage of fíactional numbers. © Consequently, the low achievement in fractional numbers of LAUSD elémentáry school pupils seems to be due to teachers end instructional process factors. The following paragraphs address this issue:

It is suggested that a way to facilitate the distinction between ratio and fraction among 3 rd graders teachers ought to partition instruction es follows. . Spend a considerable amount of instructional time in teaching stutents that the total number of parts of a whole constitute the denominator. Emphasize also the relationship between ordinal numbers and hames of fractions; e.g.., thirds; fquiths, fifths, tenths, etc. Illustrate by means of examples end exercises how wholes look Ilke when partioned into these fractional parts. And have students.
write the total number, of parts as the denominator without asking theng anything about the numerator. Makesisure students master this partioflar skill by means of in cilass exercises, as a group and indlvidually, homén work assignments, divide the class into three or so groups and \%rạ"nize competitions among groups, 'independent study, and so on. Thee tach of this skill-should contínue'untif the entiréclas's has mastered it. FOnce ${ }^{\text {it }}$ this has occurired, then teachers can gradually proteed to instriet the clas's in assigning, numbers to the numerator based on the number of part's desired.

For example, suppose students hávoialready developed the stikjl of identifying the 10 as the denominator for something divided into ten equal parts.. The teacher should then proceed to illustrate thá $\mathrm{E} / \mathrm{t} / \mathrm{h} 0$, 3/10, $7 / 10$, etc., signifiy 1 portion out of 10,3 portions out of $10, \cdots,=$ 7. portions out of 10 , iete. this same procedure can be followed for fractions with other denominators.

When instructing students in the addition and subtractign of s. fractions., it may be helpful to clearly distinguish between fractions with like denominetors and those with unl ike denominators and tife different procedures involved in adding and subtracting the two types of fractions. In doing so, it may be useful to emphasize to students that fractions with like denominators belong to one set and thosex with unlike denominators belong, to different set. And that, the way we add or subtract is different for the two different sets. Perhaps analogies can help at this juncture. Far example, when adding of subtracting fractions with like denominators is like adding or subtracting objectis or things that are alike: oranges and oranges, chairs and chalrs, desks,
and desks, etc. And that adding or subtracting fractions. with unlike denominators is like trying to add or subtractiobjetts or things fiat are not* *ike. Thus, in order to di" or subtract we must change them so that they become alike which is exactly the purpose of 'find ing the common"denominator instruction here should proceed more carefully and over long period of time than when teachling:addition or subtraction with like denominators,:

The results of the students' performance on item 32 indicate that upwards of $2 / 3$ of the pupils know how to multiply two fractions; the difficulty appears. to be when students are asked to multiply a whole number by a fraction or mixed number by a fraction. The common mistake here' appears to bede to not remembering that a whole number is equal to a fraction having that particular number as numerator with one as the denominator, eng., $5=5 / 1$. Thus, it stands to reason that. way of increasing students' proficiency in multiplying a whole number by a : fraction is to make sure pupils know how to convert whole" number into a fraction with a one as denominator. This can be accomplished by simple repetition and reinforcement periodically reviewed over an. extended period of time. The case of multiplying a mixed. number by a fraction can be dealt with as follows. Emphasize the need to convert the mixed number into a fraction and then proceed to use the technique of multiplying fractions by fractions. Again, instruction followed by, repetition and reinforcement 'wi th periodic reviews can take the students long way fin developing proficiency in this skill area.
, The abovif suggestions apply to the instruction of all students. However, some.additional factors ought to be considered for the case of the NES/LES students. First, LAUSD ought to adopt the policy of making it possible for schools and classroom teachers to administer diagnostic mathematics assessments at, the beginning of the school year In the language of the student (s). The diagnostle instrument can conceivably consist of two parts: one encompassing rote skills, addition, subtraction, multiplication, division, etc., and the other can include mathematical terms, concepts, and vocabulary.. Such a diagnostic instrument has the potential to facilitate placement of the NES/LES students at their appropriate skill and cognitive level, and assist teachers in deciding whether, these students need more instruction on mathematical skills or on vocabulaty and concept development. This could result in a better learning and instruction atmosphere. This can contribute to an increased student achievement level and increased satisfaction for all concerned.

Second, the instructlonal process for the NES/LES students shouid take place in their native language when new concepts and skills are introduced and taught. Eng! ish can be the medium of instruction when reviewing concepts and skills already mastered by these pupils. it is of cardinal importance to assure that teachers of NES/LES pupils speak the language of the students adequately. A person who took courses for a year or two of the language in question the college level will more than likely not be able to impart instruction in that language to native speakers.

Thlrd; those teachers imparting instruction in a language other than English should know the mathematics vocabulary and termino jogy in that language.- If no such personnel exists in LAUSO this can perhaps be alleviated by in-service training, summer courises, seminars or workshops. Fou'rth, in order to better assess. the mathematics skills of NES/LES pupils, whether at the beginning, middle, or end of the school year; the assessment instruments should be in their native language. Otherwise, the assessment of mathematics skills will be confounded with language skills assessment.

Fifth, curriculum materials in the language of the students should be made available to both studepts and teachers to better reinforce the instructional process. Supplementary materlals, math labs, and other curriculum aids should also be accessible in the language of the students.

Finally, an effort should be made to integrate the school's curriculum and instructional process with resource, human and physical, in the outside community. This suggestion applies to both English/ Bilingual and NES/LES pupils, and it aims at minimizing the discrepancy between the in school and out of school students' environment.

SUMMARY

Three thousand eight hundred thirty five students in the 3rdand 6th grade'in Los Angeles took an assessment of progress in fundamental skills in mathematics during fall 1978. One thousand, seven, hundred forty were third griders and' 2,095 were sixthgraders: There $384 /$ NES/LÊS pupils and l, 350 English/Bilingual in the third grade sample while 795 weré NES/LES and 1,300 English/Bilinguals in the sixth grade. Third .
grade students in CAUSD are still unable to distinguish the cohcept - of fraction from that of ratio. Sixth grade students. have difficulty in adding and subtracting fractions, muttiplying a whole number by a fraction, and in multiplying a mixed number by 'a fraction. At both grade levels, NES/LES students performed less well than English/Eilingual pupils.

It wa's found that all students in the third grade have.difficulty in differentiating between the concept of fraction and the concept. of ratio when in a parts to whole context. Stidents at the 5 ixth grade level performed low in the addition and subtraction of fractions. In multiplying fractions, students performed better when multiplying two fractions than when multiplying a whole number by a fraction.

The discussion section outlined some suggestions for instruction to improve the mathematics achievement of elementary school pupils in fractional numbers.

[^0]: ***********永末***

 * . Reproductions supplied by EDRS are the best that can be made from the original"document.

